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A PHASE SPACE ANALYSIS OF A NON-LINEAR OSCILLATOR EQUATION
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In a recent paper, Hamdan and Shabaneh [1] investigated the large amplitude free
vibrations of non-linear oscillators that can be modelled by the equation

ü+mu+ o1u2ü+ o1uu̇2 + o2u3 =0, (1)

where o1 and o2 are positive parameters, and m can take one of the three values (−1, 0, 1).
They constructed approximations to the analytic solutions of equation (1) by use of
harmonic balance methods [2] and the time transformation procedure [3]. These results
were then compared to numerical solutions of equation (1). The purpose of this note is
to prove that all the solutions of equation (1) are periodic. This is accomplished by using
methods from the qualitative theory of differential equations [2, 4, 5].

To proceed, change to phase space variables (x, y), where

x= u, y= u̇. (2)

In these variables, equation (1) becomes

dx
dt

= y,
dy
dt

=−
(m+ o1y2 + o2x2)x

1+ o1x2 . (3a, b)

The trajectories in phase space are then given by the solutions to the differential equation
[2, 4, 5]

dy
dx

=−$m+ o1y2 + o2x2

1+ o1x2 %0xy1. (4)

Inspection of equation (4) shows that it is invariant under the co-ordinate transformations

S1: x:−x, y:y (reflection in the y-axis),

S2: x:x, y:−y (reflection in the x-axis),

S3: x:−x, y:−y (inversion through the origin).

Finally, equations (3) are a reversible system in the sense of Strogatz [6], i.e., these
equations are invariant under the transformation

t:−t, y:−y. (5)

The null-clines [2, 4] of equation (4) are those curves along which the slope dy/dx of
a trajectory in phase space is either zero or unbounded. Examination of equation (4) gives

dy
dx

=a: y=0, (6)

dy
dx

=0: (m+ o1y2 + o2x2)x=0. (7)

0022–460X/97/280556+04 $25.00/0/sv960930 7 1997 Academic Press Limited



(a)

y

x

(+)

(–)

(–)

(+)

(d)

–B B

–A

A

(c)

B

–A

A

(b)

B

A

    557

Thus, equation (6) indicates that trajectories in phase space always cross the x-axis with
infinite slope. From equation (7) it follows that the trajectories always cross the y-axis
with zero slope. If m=0 or 1, then this conclusion remains correct. However, if m=−1,
then the trajectories have zero slope when they also cross the ellipse

o1y2 + o2x2 =1. (8)

Note that the null-clines intersect at the fixed points of the equation. (Fixed points are
constant or equilibrium solutions to equations (3).) Also, the null-clines divide the phase
plane into several open regions such that in each region the sign of dy/dy is fixed. In these
regions dy/dx is bounded. The essential fact to bear in mind is that periodic solutions
correspond to closed curves in phase space [2, 5–7].

With regard to equation (4), there are two cases to consider: case I corresponds to m=0
or 1, o1 q 0, and o2 q 0; case II corresponds to m=−1, o1 q 0, and o2 q 0.

For case I, the x- and y-axes are null-clines. The slope, dy/dx, is zero along the y-axis
and unbounded along the x-axis. The null-clines intersect at (x̄, ȳ)= (0, 0), the only fixed
point for the system. The null-clines thus divide the phase plane into four open regions,
as shown in Figure 1(a). The sign of dy/dx in each of these regions is indicated by the
symbols (+) and (−).

The analysis for this case begins with the selection of an arbitrary point on the positive
y-axis. This is represented by the dot labelled A in Figure 1(a). The phase space trajectory
that passes through this point is given in Figure 1(b). Note that the slope is zero at point
A and is unbounded at point B where the trajectory intersects the x-axis. Applying the
symmetry operation S2 (reflection in the x-axis) to this curve gives Figure 1(c). Finally,
the application of symmetry operation S1 (reflection to the y-axis) gives the closed curve
of Figure 1(d). The general conclusion reached from this geometrical analysis is that for

Figure 1. Case I, in which m=0 or 1, o1 q 0, and o2 q 0. (a) The signs of dy/dx; (b) typical trajectory in the
first quadrant; (c) curve resulting from applying S2 to (b); (d) application of S1 to (c).



(b)

(a)

y

x
(+)

(–)

(–)

(+)

(+)

(–)

(–)

(+)

   558

Figure 2. Case II, in which m=−1. (a) The signs of dy/dx and the three fixed points; (b) typical phase space
curves.

m=0 or 1, o1 q 0, and o2 q 0, all the trajectories of equation (4) correspond to closed
curves in the (x, y) phase space. Consequently, for case I, all solutions are periodic, except
for the single fixed point at (x̄, ȳ)= (0, 0).

For case II, the x- and y-axes are still null-clines; i.e., the slope, dy/dx, is zero along
the y-axis and unbounded along the x-axis. However, observe that dy/dx is also zero along
the ellipse given by equation (8). Three fixed points now exist: they are located at

(x̄1, ȳ1)= (−1/zo2, 0), (x̄2, ȳ2)= (0, 0), (x̄3, ȳ3)= (1/zo2, 0). (9)

The null-clines thus divide the phase plane into eight open regions. These are shown in
Figure 2(a), where the heavy dots indicate the three fixed points. The fixed points (x̄1, ȳ1)
and (x̄2, ȳ2) correspond to linear centers, while (x̄1, ȳ1) is a saddle point [8]. A theorem by
Strogatz [6] on reversible systems can be applied to this problem to show that sufficiently
close to the fixed points (x̄1, ȳ1) and (x̄3, ȳ3) all the trajectories are closed curves. Using this
result and constructing trajectories based on the properties of dy/dx, as indicated in Figure
2(a), it can be shown that typical trajectories have the structure as given in Figure 2(b).
Thus, all the solutions for case II are periodic except for the three fixed points and the
‘‘figure-eight’’ curve which corresponds to two homoclinic orbits. These are trajectories in
phase space that approach the origin as t:2a. The reason that homoclinic orbits are
not considered periodic solutions is that the ‘‘period’’ for motion on them is infinite [6].
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In view of the above results, it can be concluded that all solutions to equation (1) are
periodic except for the fixed points and the homoclinic orbits for the m=−1 case. (It is
of course assumed that o1 q 0 and o2 q 0.) The procedure used to obtain this conclusion
is based on the application of the qualitative theory of differential equations to our
problem. This is a very powerful technique and can be directly applied to general second
order differential equations that are currently used to model non-linear oscillatory systems
[2]. Finally, the work of Hamdan and Shabaneh [1] is consistent with the results of this
note.
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